
Simulation of the 2D Ising Model

Mark Van Selous
UID: 116031813

December 15, 2020

Part I: Random Spins and Magnetization

Introduction
The Ising model was created to study a phase transition from paramagnetism
to ferromagnetism. It does so by simulating the magnetic dipole moments of
atomic spins.

In this report, we will outline how we recreated and applied the 2D Ising Model
with python. We first used the Ising Model to calculate the magnetization
of randomly generated matrices and the dispersion of a large sample of them.
Then, we used the Metropolis algorithm to solve for the average energy and
magnetization (after thermalization). More specifically, we experimented with
a variable β = 1/kT to learn how the average energy and magnetization evolve
as a function of temperature.

The body of our paper includes code snippets to help the reader follow along
with our work. Please see the appendixes for the highlights of the project. You
can also access our python script here: https://colab.research.google.com/
drive/1q3xJbQ1UqtFf9qWAC-XtnDKa9E1_DAyJ?usp=sharing. We have also at-
tached its pdf printout with this report.

Generating the matrices
To generate a N = m×n matrix of spin values, we wrote a function that gener-
ates a random m by n matrix of 0s and 1s and remapped the 0s to -1s. We could
then find that system’s magnetization, m = 1

N

∑
i=1

∑
j=1 σi,j , by summing the

the spin of each element and dividing by the total number of elements. We could
estimate the dispersion, ∆m2 = m2 = m2, by generating the large sample of
matrices and making use of our calculation for each systems magnetization.

1

https://colab.research.google.com/drive/1q3xJbQ1UqtFf9qWAC-XtnDKa9E1_DAyJ?usp=sharing
https://colab.research.google.com/drive/1q3xJbQ1UqtFf9qWAC-XtnDKa9E1_DAyJ?usp=sharing


Figure 1: The function, Generate Spins(N), we wrote to generate an N = m×n
matrix and compute its magnetization. See Appendix A for sample matrices we
generated.

Especially with the smaller sized matrices, we found there to be a high degree
of variability in the dispersion among the samples we generated. This was due
to the fact that we were finding the dispersion of a much large sample of spins
in the larger matrices. Since every spin had an equal chance of being spin up or
spin down, we would expect for the distribution of magnetization’s to be more
starkly concentrated around m = 0.

As the number of spins increases, we would expect the average magnetization,
m to tend towards zero. While the term m2 will also tend towards zero, it would
do such much more slowly as every matrix makes a non-negative contribution
to it.

Figure 2: The function, Calc Dispersion(N,steps), we wrote to estimate the
dispersion with a sample of n = steps matrices. Please see Appendix B for the
results of running this function for samples with three different sized matrices.

Part II: Metropolis Algorithm and the Ising Model

Implementing the Metropolis Algorithm
Once we developed our method for generating spin matrices, we created our
implementation of the Metropolis-Hasting algorithm. We will briefly describe

2



the iterative steps of this model.

First, we generated a random spin matrix. Like the spin matrices we previously
generated, its elements are completely random and do not reflect a thermalized
system. Second, we randomly select a spin element and calculate the energy
difference, ∆E2D = 2Jσi,j(σi−1,j + σi+1,j + σi,j−1 + σi,j+1), of flipping that
spin. Third, if the resulting energy difference is less than 0, we flip the spin.
If the energy difference is positive, but a random X (taken from the standard
uniform distribution) is less that e−β∆E2D we still elect to flip the spin. In
practice, we used the inequality ln (x) < −β∆E2D. Forth, we calculate the
system’s properties we are interested in and factor them into a running average.
We chose to calculate the systems energy E(r) = −J

∑
ij σiσj and magnetism.

These four steps were repeated a sufficient number of times so that the average
energy would converge to oscillate closely around a specific value.

Figure 3: The function, Metropolis Sampling(N,steps,beta), we wrote to per-
form the Metropolis-Hasting algorithm. Here β = 1/kT is used in calculating
the Boltzmann factor and can be varied to simulate systems at different tem-
peratures.

3



Figure 4: The functions, Energy Difference(M,x,y,x max,y max) and Com-
pute Energy(M,x,x max,y max) which are called as part of the Metropolis Sam-
pling algorithm. The borders of the input matrix are nearest neighbors under
modular arithmetic.

Results
We initially applied our algorithm to 3 × 3, 10 × 10, and 64 × 64 spin matrices
representing systems with β = 0.1, 0.2, or 0.4. With a fixed β, we found the
average energy to be directly proportional to the number of spin elements. For
example, a 10 × 10 matrix has a little more than 11 times as many elements
as a 3 × 3 matrix. We similarly found the average energy to be roughly by the
same proportions. This was result was not too surprising and served as a good
indicator for our models reliably.

4



Figure 5: An example plot of both the average energy and magnetization vs
NMC. Please see Appendix C for our selected examples or the python script to
explore some more.

Temperature Effects on Average Energy
It also allowed us to further investigate the the average energy while sticking
with systems with a common dimension. Our next step was to compute the
average energy with an assortment of values for β. To help smooth out the
results, we averaged the results from five trials which themselves were averages
of the last 100 values obtained by the model.

When we did so, we found the average energy to approximately follow the lower
half of an inverted sigmoid function as a function of β. But if we were to extend
the model to the, non-physical, values of β < 0, the average energy remains
approximately zero.

5



Figure 6: Plot of the average energy as a function of beta. There was a notice-
ably larger amount of variance in our data as beta increased.

Temperature Effects on Average Magnetization

We followed a similar procedure to learn how the average Magnetization evolves
as a function of β. But if we were to average the results from multiple trials,
we would expect to obtain zero. So instead, we made a scatter plot depicting
the results from all of the individual trials.

We found that around β = 0.3 the average magnetization ballooned out in either
direction. Then, by β = 0.6, reached its maximum and minimum of −1 and 1.
At these high levels for β there were few trials that managed to meaningfully
move towards zero by the end of 5000 interactions of the Metropolis Algorithm.

Figure 7: Plot of the average magnetization as a function of beta. Each trial
was performed with 5000 iterations so that we could compare how quickly the
average magnetization would converge to zero. Seeing the greater spread in the
average magnetization helps to explain the variance in the average energy as
beta increases.

Conclusion

We were successful in using the Metropolis algorithm to simulate thermalization
in the 2D Ising model. We found the average energy in the system to be directly

6



proportional to the number of spin elements and graphed a relationship between
the average temperature and β.

It was more challenging to draw any direct conclusions about the average mag-
netization. We did find that for a fixed number of iterations of our algorithm,
the average magnetization balloons away from zero as beta increases (partic-
ularly for β > 0.3). This had a noticeable impact on the average energy by
increasing the variance in our results.

7



Appendix A: Generated Spin Matrices

Figure 8: An example 3 × 3, 10 × 10, and 64 × 64 spin matrix generated, along
with its magnetization, by our Generate Spins(N) function.

8



Appendix B: Dispersion Calculations

Figure 9: Example dispersion calculations with our three sized matrices. From
these calculations, we were able to infer that the dispersion would decrease as
the dimensions of N increase. We also outputted m and m2 and noticed much
greater variance in m.

9



Appendix C: Results of the Metropolis Algorithm

The following plots are compliments to figure 5 in the text above.

Th first two plots were generated with a constant β = 0.2 but variably sized
matrix. They illustrate how the average energy is directly proportional to the
number of spin elements.

Figure 10: The final values for the average energy and magnetization were
-42.0168 and -0.020 respectively. Although the average energy did not signif-
icantly change after NMC = 2000, the average magnetization started to drift
towards 0.

10



Figure 11: In this trial, the last recorded values for the average energy and
magnetization were -1643.559 and -0.012 respectively. This time the average
magnetization gradually decreased throughout must of the process.

Th last two plots were generated with a constant N = 3 × 3 but differing β.

11



Figure 12: In this trial (with β = 0.1 and N = 3 × 3) the final values for the
average energy and magnetization were -2.124 and 0.0200.

12



Figure 13: In this final example, the average energy and magnetization ended
up at -11.452 and -0.318. This magnetization was noticeably higher than the
trials with a lower β.

13


